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Abstract. The dispersion relation of a doped hole in the half-filled 2D Hubbard model is shown to follow
a |k|4 law around the (0,±π) and (±π, 0) points in the Brillouin zone. Upon addition of pair-hopping
processes this dispersion relation is unstable towards a |k|2 law. The above follows from T = 0 Quantum
Monte-Carlo calculations of the single particle spectral function A(k, ω) on 16 × 16 lattices. We discuss
finite dopings and argue that the added term restores coherence to charge dynamics and drives the system
towards a dx2−y2 superconductor.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.30.+h Metal-insulator transitions
and other electronic transitions

The excitation spectrum of a band insulator is gaped in
both the spin and charge degrees of freedom. In this case
the single particle Green function will essentially take a
free particle form since there are no low lying excitations
on which the added particle can scatter. The Mott insu-
lator with long-range antiferromagnetic (AF) order has a
charge gap but no spin gap. This leads to non-trivial hole
dynamics which will depend on the dynamical spin sus-
ceptibility as well as on the coupling between spin and
charge degrees of freedom. Hole dynamics in magnetic in-
sulators have been addressed in the pioneering work of
Brinkman and Rice [1]. Progress in photoemission spec-
troscopy has provided us with an experimental realization
of this problem [2]. In this article, we show numerically
that hole dynamics in a two-dimensional Mott insulator
with long-range magnetic order may behave in radically
different ways. The dispersion relation of a hole doped
into the half-filled Hubbard model is very flat around the
(0,±π) and (±π, 0) points in the Brillouin zone. We will
give numerical evidence that it follows a |k|4 law. We argue
that this flatness and resultant singular momentum depen-
dence of charge excitations provides us with a microscopic
basis for understanding incoherent charge dynamics and
unusual character of the metal-insulator transition. Upon
addition of a term with matrix element W which describes
pair-hopping processes, this flat dispersion relation is un-
stable towards a |k|2 law. Although the added term for
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small values of W does not alter the insulating state it-
self it restores coherence to charge dynamics in the vicinity
of the Mott transition.

The model we consider reads:
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Here δ = ±ax,±ay, c†i,σ creates an electron with
z-component of spin σ on lattice site i and ñi,σ = c†i,σci,σ−
1/2. We consider a square lattice of linear size L and im-
pose periodic boundary conditions in both lattice direc-
tions. The t-U -W model has been introduced and studied
in references [3–6]. The results show that at half-filling
and finite values of U/t, W triggers a quantum transition
between the Mott insulator and a dx2−y2 superconductor.
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creates a spin triplet on the bond i, i+δ with z-component
of spin m. In the strong coupling limit, the states T †i,δ,m
and ∆†i,δ form a complete basis for a pair of electrons on
the bond i, i + δ. Thus, any spin configuration surround-
ing a hole may be written as a superposition of triplets
and singlets on a set of bonds covering the lattice. One
may now see how hole dynamics are effected by the W -
term: the motion of a pair of electrons is nothing but the
hopping of a hole within the same sublattice accompa-
nied by a local rearrangement of spins. Due to zero point
quantum fluctuations of the spin background, the resul-
tant state is not orthogonal to the ground state. Since the
state in which the hole is doped has AF order, we expect
the singlet pair-hopping processes to dominate the low-
energy physics. Those processes are similar to the three
site term obtained in a strong coupling expansion of the
Hubbard model [7]. The influence of those terms on hole
dynamics has been addressed in reference [8].

At half-band filling auxiliary field quantum Monte
Carlo (QMC) simulations provide an efficient tool for the
study of the above model. Partly due to the presence
of particle-hole symmetry, the infamous sign problem is
avoidable. Our T = 0 data are produced with the pro-
jector QMC (PQMC) algorithm [9,10] supplemented with
a numerically stable method to compute imaginary time
displaced correlation functions [11]. The imaginary time
data is analytically continued to the real axis with the
Maximum-Entropy method [12,13]. We have used a flat
default model and taken into account correlations in imag-
inary time data with the use of the covariance matrix.

We start by considering the half-filled Hubbard model
at U/t = 4 and T = 0. For this parameter set and
after extrapolation to the thermodynamic limit numer-
ical simulations lead to the conclusion that the ground
state is an insulator with single particle gap ∆qp =
0.67 ± 0.015 [14] and long-range AF order: m2 ≡
limL→∞ 3〈mz(L/2, L/2)mz(0)〉 = 0.39(5) [15,16]. Here,
mz(i) = ñi,↑ − ñi,↓. Figure 1 plots A(k, ω) ≡ ImG(k, ω),
where G(k, ω) corresponds to the single-particle Green
function. Due to particle-hole symmetry, A(k, ω) ≡ A(k+
Q,−ω) with Q = (π, π) in units of the lattice constant.
The sum rule:

∫ 0

−∞A(k, ω)dω = π
∑
σ 〈c

†
k,σck,σ〉 is sat-

isfied. We are primarily interested in the single-hole dis-
persion relation E(k) as defined by the peak position in
A(k, ω). Around the (0, π) and three equivalent points
in the Brillouin zone, E(k) shows a very flat structure.
Along the (0, 0) to (0, π) direction E(k) is compatible
with a |k|4 law over an acceptable range (see Fig. 3). The
same conclusion is reached when considering the (π, π) to
(0, π) direction. Such a flat dispersion relation has been
observed numerically in t-J model calculations [17]. The
overall flatness appears consistently with the flat disper-
sion observed in underdoped cuprates [2,18,19]. The fol-
lowing points are of interest. i) The energy difference
∆E = E(k = (π/2, π/2))−E(k = (0, π)) is not unambigu-
ously distinguishable from zero within our resolution. ∆E
= 0.045t, 0.06t and 0.015t for the L = 8, 12 and L = 16
lattices respectively. The uncertainty of our data, is in the
same ball-park as the above quoted values. We note that

Fig. 1. A(k, ω) at T = 0 for the half-filled Hubbard model
at U/t = 4 on a 16 × 16 lattice. The considered path in the
Brillouin zone is listed on the left hand side of the figure. We
have normalized the raw data by the factor listed on the right
hand side of the figure. This normalization sets the peak value
of A(k, ω) to unity for all considered k vectors.

the flatness of the dispersion relation around the (0, π)
point should lead to a broader lineshape at (0, π) than
at (π/2, π/2) [20] thus leading to some ambiguity in the
definition of E(k). In fact, defining E(k) as the leading
edge rather than the peak position yields a negative value
for ∆E for the L = 16 lattice. Lineshapes are notoriously
hard to compute with the Maximum-Entropy method and
further large scale calculations are required to confirm this
point. ii) A shadow-band due to the presence of long-range
magnetic order is seen along the (π/2, π/2) to (π, π) to
(π, 0) direction. Around the (0, 0) point a two peak feature
is seen in the data. A similar feature at larger couplings
is seen in reference [21].

We now set W/t = 0.15 and keep the other pa-
rameters constant, U/t = 4, T = 0, 〈n〉 = 1. At this
point in parameter space, the ground state remains a
Mott insulator with m = 0.24(1) and ∆qp = 0.54(6) [5].
Figure 2 plots A(k, ω) again on a L = 16 lattice. The
following points are of importance. i) Upon inspection
one notices that the bandwidth is substantially enhanced
by the inclusion of the W -term. This high energy phe-
nomena may be captured at a mean-field level by the
Ansatz: 〈ni,↑〉 + 〈ni,↓〉 = 1, 〈ni,↑〉 − 〈ni,↓〉 = (−mHF)ix+iy

and 〈Ki〉 = K. Self-consistency yields the single parti-
cle gap ∆HF ≡ UmHF/2 = 0.43t and a band ranging
from −11.9t to 11.9t. The bandwidth agrees well with the
Monte-Carlo data. This approximation underestimates the
single particle gap thus showing that is does not capture
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Fig. 2. Same as Figure 1 but for W/t = 0.15.
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Fig. 3. Dispersion relation, E(k), as defined by the peak po-
sition in A(k, ω). The solid lines correspond to a least square
fit to the form a + b(π − ky)2 (a + b(π − ky)4) for W/t = 0
(W/t = 0.15). For the fit we consider the ky range [5π/8, π] for
both choices of W/t.

the low-energy physics contained in the W -term. ii)
Around the (0, π) point, E(k) is not as flat as for the
Hubbard model. As shown in Figure 3, the data is com-
patible with a quadratic fit. To be more precise, as W/t
is enhanced the domain in k-space around the (0,±π),
(±π, 0) points which is compatible with a |k|4 fit is sup-
pressed. iii) As in Figure 1 the shadow-band feature is
present. iv) The energy difference in the dispersion rela-
tion between the (π/2, π/2) and (0, π) points is not dis-
tinguishable from zero [22].

Next we study finite dopings. Here, we are confronted
to a sign problem so that the CPU time required to achieve
a given precision scales exponentially with inverse temper-
ature (β) and lattice size. The presented data is produced
with the finite temperature QMC method [16,23]. We first
consider the vertex contribution to pairing correlations in
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Fig. 4. Equal-time pair field correlations versus filling in the
d-wave and extended s-wave channels. P̃ vd,s(R) ≡ P vd,s(R)/
P vd,s(0). The same scale is used for both (a) W/t = 0.15 and
(b) W/t = 0.

the d-wave and extended s-wave channels. This quantity
is defined by:

P vd,s(r) = 〈∆†d,s(r)∆d,s(0)〉 −
∑
σ,δ,δ′

fd,s(δ)fd,s(δ′) (3)

(
〈c†r,σcδ′,σ〉〈c†r+δ,−σc0,−σ〉+ 〈c†r,σc0,σ〉〈c†r+δ,−σcδ′,−σ〉

)
where ∆†d,s(r) =

∑
σ,δ fd,s(δ)σc†r,σc

†
r+δ,−σ, fs(δ) = 1 and

fd(δ) = 1(−1) for δ = ±ax (±ay). Per definition, in the
absence of interaction P vd,s vanishes (i.e. in the above men-
tioned mean field approximation which takes into account
band width effects, P vd,s vanishes). Due to the strong vari-
ation of P vd,s(0) [24] as a function of doping, we consider
the quantity: P̃ vd,s(r) = P vd,s(r)/P vd,s(0) which measures
the decay rate. This quantity is plotted versus doping in
Figure 4. At the largest distance on our 8 × 8 lattice,
the W -term substantially enhances the d-wave signal. We
note that the same conclusion is reached when considering
Pd,s = 〈∆†d,s(r)∆d,s(0)〉.

The uniform spin susceptibility is plotted versus tem-
perature in Figure 5a at 〈n〉 = 0.78, U/t = 4, for
various values of W/t. Starting from the noninteracting
case (U=W=0) and turning on the Coulomb repulsion to
U/t = 4 enhances the spin susceptibility. At high temper-
atures, this enhancement may be understood within the
random phase approximation. As W/t grows, there is a
suppression of the spin susceptibility. There are two ef-
fects which cause this suppression. i) The enhancement
of the bandwidth as a function of W/t. ii) The growth
of d-wave pair correlations. Disentangling the contribu-
tion of those two effects at different energy scales is non-
trivial. The spin structure factor S(q) ≡ 〈mz(q)mz(−q)〉
is plotted in Figure 5b. The reduction of S(q) at q = 0
as W/t is enhanced may be traced back to our discussion
of the spin susceptibility since the latter quantity is given
by βS(q = 0). In the vicinity of q = (π, π), S(q) shows a
somewhat sharper feature at W/t = 0.15 than at W/t = 0,
thus showing that the magnetic length scale is enhanced
by the W -term.
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Fig. 5. (a) Spin susceptibility versus temperature for various
values of W/t and 〈n〉 = 0.78. (b) Spin structure factor at
βt = 6, 〈n〉 = 0.78 for the Hubbard and t-U-W models. In both
(a) and (b) the solid line corresponds to the non-interacting
(U = W = 0) case.

In summary, we considered the t-U -W model at U/t =
4 and for two different choices of W : W/t = 0,W/t = 0.15.
In both cases, the ground state at half-filling is a Mott
insulator with long-range AF order. However, the na-
ture of hole dynamics in this AF background is strongly
dependent on the choice of W/t. In the case of the
Hubbard model we concluded that the hole dispersion re-
lation is consistent with a |k|4 law around the (0,±π) and
(±π, 0) points in the Brillouin zone. This flat dispersion re-
lation is compatible with the picture of incoherent charge
dynamics and introduces a singular momentum depen-
dence in the electron self-energy. Recently, the authors of
reference [25,26] have computed the Drude weight on t-J
clusters and found results consistentD ∼ δ2. The sum rule
for the optical conductivity is proportional to the doping
δ in the case of the t-J model. Thus, close to the metal in-
sulator transition, only a vanishingly small portion of the
weight in the optical conductivity will be contained in the
coherent Drude response. Introducing the W -term alters
this situation. On one hand we have shown here that the
dispersion relation around the (0,±π) and (±π, 0) points
follow a |k|2 law. On the other hand, the Drude weight
satisfies D ∼ δ for the t-J-W model [25,26]. Thus, the W -
term restores coherence to charge dynamics in the vicin-
ity of metal-insulator transition. However, the short-range
AF spin correlations at finite doping remain robust upon
switching on W . In the doped phase, d-wave pairing cor-
relations functions are substantially enhanced by the in-
clusion of W thus lending support to the occurrence of a
superconducting state. In terms of quantum phase tran-
sitions the inclusion of the W -term alters the dynamical
exponent from z = 4 to z = 2 [5,25–27]. More generally,
theW -term exploits one of the many potential instabilities
of the incoherent metallic state realized in the Hubbard
model in the vicinity of the metal-insulator transition. As
a more realistic model for high-Tc cuprates, smaller values
of W are to be considered so as to study the interplay be-
tween the pairing energy scale and the larger energy scale
associated with the flat bands.
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